CORE MATHEMATICS (C) UNIT 2 TEST PAPER 1

- 1. Use the Remainder Theorem to decide whether $2x^3 + 3x^2 4x + 1$ is divisible by 2x + 1. [3]
- 2. The first three terms of a geometric series are 4, -1, $\frac{1}{4}$. Find
 - (i) the seventh term, [2]
 - (ii) the sum to infinity of the series. [2]
- 3. The gradient of a curve at the point (x, y) is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{4}{x^2}.$$

The curve passes through the point P with coordinates (1, 7).

Find the equation of the curve, in the form y = f(x).

[6]

- 4. (i) Show that the equation $2 \sin^2 x = 2 \cos x$ can be written as a quadratic equation in $\cos x$. [2]
 - (ii) Hence find, in degrees, the values of x between 0 and 360° for which $2 \sin^2 x = 2 \cos x$. [5]
- 5. (i) A sequence of numbers is given by $x_{n+1} = x_n^2 3$. Given that $x_1 = 2$,
 - (a) find the value of x_5 , [2]
 - (b) deduce the value of x_{55} . [2]
 - (ii) Evaluate $\sum_{r=1}^{21} (2r+3)$. [4]
- 6. (i) Show that x = 1 is a solution of the equation $x^3 7x^2 + 15x 9 = 0$, and hence solve this equation completely. [5]
 - (ii) Hence find all solutions of the equation $3^{3y} 7(3^{2y}) + 15(3^y) 9 = 0$. [4]

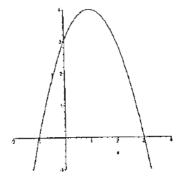
[5]

CORE MATHEMATICS 2 (C) TEST PAPER 1 Page 2

7. The diagram shows the curve with equation $y = 3 + 2x - x^2$.

The area of the finite region between the curve and the x-axis is to be estimated using the trapezium rule.

x	-1	0	1	2	3
y	0	3			0

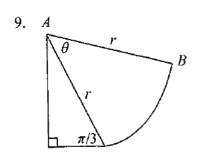


- (i) Calculate the values of y for x = 1 and x = 2 and hence find an estimate of the area.
- (ii) Use integration to find the true value of the area. [4]
- 8. In the binomial expansion of $(a+x)^n$, where n > 4, the coefficient of x^3 is twice that of x^4 .

(i) Show that n = 2a + 3. [4]

In the same expansion, the coefficient of x^2 is $\frac{3}{2}$ times the coefficient of x.

- (ii) Obtain another relation between n and a. Hence find the values of n and a. [4]
- (iii) State the constant term in the expansion. [2]



In the diagram, BC is an arc of a circle with centre A and radius r cm. Angle $BAC = \theta$ radians and angle $ACD = \frac{\pi}{3}$ radians.

AD is perpendicular to DC.

- D C

 (i) Show that $AD = r \frac{\sqrt{3}}{2}$ cm and find the length of CD. [3]
- (ii) Show that the perimeter of the figure ABCD is $r\left(\frac{3+\sqrt{3}}{2}+\theta\right)$ cm. [3]
- (iii) Show that the area of the figure ABCD is $\frac{r^2}{2} \left(\frac{\sqrt{3}}{4} + \theta \right) \text{ cm}^2$. [3]

The perimeter of ABCD has a fixed length of 8 cm.

- (iv) Express the area of ABCD in terms of r only. [3]
- (v) Show that as r varies, the area is maximum when $r = \frac{16}{6 + \sqrt{3}}$. [4]

www.mymathscloud.com

3

CORE MATHS 2 (C) TEST PAPER 1 : ANSWERS AND MARK SCHEME

1.
$$f(-1/2) = -1/4 + 3/4 + 2 + 1 = 7/2 \neq 0$$
, so not divisible

2. (i)
$$r = -1/4$$
 $T_7 = ar^6 = 1/4^5 = 1/1024$ (ii) $a/(1-r) = 4/(5/4) = 3.2$

(ii)
$$a/(1-r) = 4/(5/4) = 3.2$$

3. Integrating,
$$y = x + 4/x + c$$

$$7 = 5 + c$$

$$7 = 5 + c$$
 $y = x + 4/x + 2$

4. (i)
$$2-2\cos^2 x + \cos x - 2 = 0$$

(ii)
$$\cos x (2 \cos x - 1) = 0$$

$$\cos x = 0$$
 or $\cos x = \frac{1}{2}$

$$x = 60, 90, 270, 300$$

5. (i) (a) Sequence is
$$2, 1, -2, 1, -2$$

$$x_5 = -2$$

(b) All odd-numbered terms from
$$x_3$$
 are equal, so $x_{55} = -2$
(ii) Series is 5, 7, 9, ..., 45 Sum = $21(5 + 45)/2 = 525$

$$Sum = 21(5 + 45)/2 = 525$$

6. (i)
$$f(1) = 1 - 7 + 15 - 9 = 0$$

$$(x-1)(x^2-6x+9)=0$$

$$(x-1)(x-3)^2=0$$

$$x = 1, x = 3$$

(ii)
$$3^y = 1$$
 or $3^y = 3$

$$y = 0 \text{ or } y = 1$$

7. (i)
$$y(1) = 4$$
, $y(2) = 3$ Area $\approx \frac{1}{2}(0 + 0 + 2(3 + 4 + 3)) = 10$

(ii)
$$\left[3x + x^2 - \frac{x^3}{3}\right]_{-1}^3 = 9 - \left[-\frac{5}{3}\right] = 10^{\frac{2}{3}}$$

8. (i)
$$\frac{n(n-1)(n-2)}{6}a^{n-3} = 2\frac{n(n-1)(n-2)(n-3)}{24}a^{n-4}$$
 $a = \frac{1}{2}(n-3)$, etc. M1 A1 M1 A1

(ii)
$$\frac{n(n-1)}{2}a^{n-2} = \frac{3}{2}na^{n-1}$$
 $3a = n-1$ $n = 3a+1$

$$3a=n-1$$

$$n=3a+1$$

$$2a + 3 = 3a + 1$$

$$a=2,\,n=7$$

$$2a + 3 = 3a + 1$$
 $a = 2, n = 7$ (iii) Constant term = $2^7 = 128$

9. (i)
$$AD = r \sin \frac{\pi}{3} = r \frac{\sqrt{3}}{2}$$

$$CD = r\cos\frac{\pi}{3} = \frac{r}{2}$$

(ii) Perimeter =
$$r + \frac{r}{2} + r\frac{\sqrt{3}}{2} + r\theta = r\left(\frac{3+\sqrt{3}}{2} + \theta\right)$$

(iii) Area =
$$\frac{1}{2} \cdot \frac{r}{2} \cdot \frac{r\sqrt{3}}{2} + \frac{1}{2}r^2\theta = \frac{r^2}{2} \left(\frac{\sqrt{3}}{4} + \theta\right)$$

(iv)
$$\theta = \frac{8}{r} - \frac{3 + \sqrt{3}}{2}$$

(iv)
$$\theta = \frac{8}{r} - \frac{3 + \sqrt{3}}{2}$$
 $A = \frac{r^2}{2} \left(\frac{8}{r} - \frac{6 + \sqrt{3}}{4} \right) = 4r - \left(\frac{6 + \sqrt{3}}{8} \right) r^2$

(v)
$$\frac{dA}{dr} = 4 - \left(\frac{6 + \sqrt{3}}{4}\right)r = 0$$
 when $r = \frac{16}{6 + \sqrt{3}}$ $\frac{d^2A}{dr^2} < 0$ so max.

$$\frac{d^2A}{dx^2}$$
 < 0 so max.